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ABSTRACT
 

The integration of Image Processing (IP) and Deep Learning (DL) techniques within smart Internet of Things 

(IoT)-based industrial automation systems has significantly advanced manufacturing efficiency. In 

industrial manufacturing, the precise mechanical inspection of components such as gears and bearings is 

critical; however, human factors often compromise the stability, efficiency, and accuracy of conventional 

testing methods. To address these challenges, this study proposes a novel edge detection approach 

leveraging a Convolutional Neural Network (CNN) with ResNet-152 for multidirectional edge detection of 

mechanical parts, enhancing feature detection precision. The method improves productivity, predictive 

maintenance, quality control, and overall operational excellence. The proposed model was evaluated against 

various DL methods and achieved an edge detection accuracy of 92.53%, surpassing traditional approaches. 

These results demonstrate the potential of the ResNet-152-based CNN in delivering high-quality, reliable 

defect detection in industrial environments. 
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INTRODUCTION  
 

With the rapid advancement of industrial 
modernization, automated manufacturing 
increasingly demands precise identification of 
mechanical parts, particularly in gears and 
bearing edge profiles (Goli et al., 2021; Zicari et al., 
2021). In line with the trend towards 
standardization and serialization, high-quality 
and high-precision gears and bearings are 
essential for ensuring product reliability (Zhu et 
al., 2022). Accurate detection of key features in 
mechanical parts is therefore crucial in current 
industrial production, as it not only affects 
product quality but also underpins efficiency 
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improvements and equipment safety (Lv et al., 
2022). 

Image Processing (IP) plays a foundational role in 
computer vision and computer science (Pandey et 
al., 2023; Bedi et al., 2023; Sharifani and Amini, 
2023; Saberironaghi et al., 2023). It encompasses 
diverse algorithms and techniques for enhancing 
and analysing visual data, with goals including 
noise reduction, sharpening, and contrast 
enhancement. Such techniques are widely applied 
in fields such as medicine, photography, and 
video production. Due to the limitations of 
traditional contact detection—often associated 
with lower efficiency and higher error rates—non-
contact IP-based detection has increasingly 
replaced conventional approaches. This transition 
has delivered higher accuracy and stability, but 
meeting the stringent demands of modern digital 
industrial systems remains a challenge (Lei, 2022; 
Capponi et al., 2022). 

The primary purpose of automation systems in 
manufacturing and industrial contexts is to 
enhance productivity and operational efficiency. 
These systems integrate hardware and software to 
optimise processes such as production, inventory 
management, and quality assurance (Kshirsagar 
et al., 2023a; Dhingra et al., 2022a). Components 
such as Programmable Logic Controllers (PLCs), 
actuators, sensors, human–machine interfaces 
(HMIs), and communication networks form the 
backbone of such systems. The PLC functions as 
the system’s “brain,” executing programmed 
instructions to control machinery. Actuators and 
sensors handle input and output operations, 
while HMIs allow operators to monitor systems 
and make necessary adjustments. Collectively, 
these components are indispensable for modern 
production, contributing to quality improvement, 
cost reduction, and process optimisation (Mandal 
et al., 2022; Kshirsagar et al., 2022a). 

Field Programmable Gate Arrays (FPGAs) have 
emerged as a powerful and flexible hardware 
platform with substantial computational 
capabilities. Over the past two decades, they have 
been widely applied in IP-based technologies. 
Leveraging extensive research and careful system 
design, the present work proposes a novel 

approach using FPGA-based IP methods to 
inspect mechanical components. This technique 
exploits the FPGA’s parallel processing capacity 
and adaptability, enabling high-speed, accurate 
mechanical part detection through optimised 
design strategies. The novelty of this research lies 
in the integration of ResNet with IP technologies, 
tailored to meet the specific requirements of 
mechanical component inspection. 

The objective is to reduce human error 

and resource waste, while improving the 

reliability and performance of detection systems, 

thereby fostering intelligent growth in the 

mechanical parts manufacturing sector. This is 

achieved by investigating automation with edge 

detection and evaluating the effectiveness of the 

Message-Passing Interface (MPI). The subsequent 

sections outline: (i) an overview of ResNet 

applications and related research in mechanical 

parts inspection; (ii) a detailed methodology 

integrating IP and MPI data for precise 

multidimensional edge detection using a CNN 

with ResNet; (iii) performance evaluation of the 

enhanced detection model; and (iv) a summary of 

the research findings. 

 

LITERATURE REVIEW 

With the advancement of computing and 
electronics, many instruments have evolved 
towards intelligence, multifunctionality, and 
miniaturisation. FPGA technology has proven 
highly effective for implementing diverse digital 
logic functions, and numerous researchers have 
explored its applications in recent years. Wang et 
al. (2022) proposed an acoustic resonance 
frequency monitoring technique implemented 
using FPGA devices to address the inadequate 
detection capacity of non-invasive oxygen sensors 
in healthcare. Comparative studies indicated a 
sensitivity limit of 1000 ppm with a 4 s response 
time, and a detection range from 1000 ppm to 
100% oxygen concentration. 

Kumar et al. (2022) developed a method for 
enhancing voice message encryption using a 
lightweight AES algorithm implemented on 
FPGA. Simulation studies revealed that this 
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approach achieved substantially higher 
encryption performance than standard methods, 
suggesting strong potential for real-world 
applications. The rapid technological evolution in 
manufacturing has driven the adoption of 
automation, with machinery increasingly 
upgraded for digital integration. In this context, 
each mechanical component plays a critical role, 
prompting researchers to focus on improving 
detection and quality control processes. For 
example, Roy et al. proposed a detection approach 
combining autonomous fibre insertion machinery 
with optical coherence tomography for quality 
assurance in conventional manufacturing. Their 
method effectively assessed variations, identified 
production anomalies, and reduced process 
variability. 

Brunella et al. (2022) addressed limitations in 
universal CPU technology for modern network 
interface cards by developing FPGA-based 
software solutions. Experimental results 
demonstrated the ability to execute dynamically 
loaded applications with high CPU core packet 
processing throughput and a tenfold reduction in 
packet forwarding latency. Similarly, Yang et al. 
(2021) investigated the anisotropic mechanical 
properties of stereolithography-manufactured 
parts. They found tensile strength varied 
significantly between planar and edge builds, 
with a 35% comparative range distribution, 
confirming anisotropic behaviour. 

Recent studies have also explored the integration 
of machine learning (ML) and deep learning (DL) 
in manufacturing contexts. Kumar et al. (2023) 
reviewed process design and production control 
for additive manufacturing using ML. Kor et al. 
(2023) examined DL applications and digital twins 
within Industry 4.0. Abdalzaher et al. (2023) 
utilised AI for securing IoT-based smart systems, 
focusing on trust mechanisms to mitigate security 
risks. Uddin et al. (2023) evaluated the integration 
of IoT services with DL technologies, while 
Rahman et al. (2023) defined Industry 4.0 in terms 
of ML and IoT usage. 

Other notable contributions include Al 

Shahrani et al. (2023), who demonstrated 

intelligent manufacturing automation powered 

by ML through the Internet; Xing et al. (2023), who 

applied DL and IP to automate A-line recognition 

in lung ultrasound images; and Sarker (2021), who 

provided a comprehensive overview of DL 

techniques, taxonomy, and applications. 

Yazdinejad et al. (2023) proposed an ensemble DL 

model for cyber threat detection in industrial IoT, 

and Chander and Kumar (2023) employed 

metaheuristic feature selection with DL-enabled 

cascaded recurrent neural networks for anomaly 

detection in IoT-based industrial environments. 

 

RESEARCH METHODOLOGY 

In this study, error detection is performed 

in two main stages. In the first stage, the image 

size and recognition rate of the input images are 

measured. In the second stage, errors are 

identified based on the placement and defects 

recorded in the MPI database of mechanical 

components. Figure 1 illustrates the proposed 

model for detecting defects in two different types 

of mechanical components. 

 

 

Figure 1 Flow diagram of defect detection 

method in manufacturing industry 
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 The input image of the mechanical component is 
pre-processed using OpenCV, and the target 
object is recognised using a pre-trained YOLO 
model. After extracting the Region of Interest 
(ROI), the relevant area is analysed to detect errors 
in accordance with the factory’s process 
standards. This approach is designed to reduce 
both economic and technical burdens for small 
enterprises, as it enables defect detection using 
externally captured images without the need for 
physical measurement tools. 

For optimal application, certain conditions must 
be met: 

1. The camera must be positioned at a fixed 
distance from the object. 

2. Lighting conditions should remain 
consistent during image capture. 

3. The camera’s field of view should closely 
approximate that of the human eye. 

4. Lens-induced distortion must be 
corrected using a distortion correction 
algorithm. 

In the image processing and object recognition 

stages, additional factors are considered. For 

example, intentional vibration is introduced to 

simulate conveyor belt movement in 

manufacturing, particularly for fluid-containing 

objects. Since the inspection target may be in 

motion, the methodology accounts for temporal 

and positional variations caused by mechanical 

operations. 

 

Image Preprocessing using RestNet-152 

 
ResNet-152, a deeper yet less complex 

architecture than VGG, is employed for 

uncertainty recognition in both the training and 

testing datasets during the initial defect detection 

experiments. With 152 layers, ResNet-152 offers 

greater accuracy, scalability, and capability in 

detecting high-level patterns compared to 

conventional methods. Its deep architecture 

enables the extraction of complex and abstract 

image features, which is critical in this research. 

While ResNet-152 requires more computational 

resources and longer training times, its superior 

accuracy in mechanical part detection justifies its 

selection. 

 

Figure 2 Architecture of RestNet -152 

 

The architecture begins with an input layer 
accepting images of fixed size with three RGB 
channels, followed by an initial convolution layer 
(Conv1) using a 7×7 kernel to produce 64 
channels. This output is downsampled to 112×112 
pixels, then processed by a MaxPool layer to 
further reduce dimensions to 56×56 pixels. The 
subsequent residual blocks, a key feature of 
ResNet-152, enable the network to learn 
effectively while preventing gradient vanishing. 
The penultimate layer applies average pooling, 
and the final Fully Connected (FC) layer outputs 
classification results, restricted here to two classes: 
“Defect” and “No Defect.” 

A skip connection in each residual block 

allows the model to transmit information between 

layers without loss of relevance. YOLO, a single-

shot object detection framework, is integrated 

with ResNet-152 to predict class labels and 

bounding boxes in real time. Compared to multi-

stage detection approaches, YOLO offers faster 

and more efficient processing, even on low-power 

devices. 
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MPI-Based Data Transmission 

Figure 3 shows the MPI database flow. The 
process begins in an idle state, moving to a startup 
state when the MPI issues a bus request. 
Depending on whether a read or write request is 
identified, the system transitions to the 
appropriate operational state. For transfers below 
8 bits, read and write operations proceed directly. 
For transfers exceeding 8 bits, the system enters a 
reply mode, and upon a successful response, 
begins byte-by-byte data transfer. Invalid 
responses trigger a pause state, followed by 
termination and a return to idle mode. This 
mechanism minimises data loss and enhances 
detection accuracy. 

 

Figure 3 Flow chart of MPI database 

 

RESULT AND DISCUSSION 

The experimental evaluation was conducted 
using a precision optical platform comprising a 
camera, stage, and other IoT-enabled devices. 
Prior to testing, all equipment was properly 
connected and calibrated to ensure measurement 
accuracy. 

Defect Detection Performance 

The proposed defect detection approach was 
compared with conventional edge detection 
methods, including Roberts, Sobel, and Prewitt, as 
well as the integrated YOLO with ResNet model. 
Table 1 presents the performance metrics in terms 
of detection error percentage and detection time. 
The Roberts, Sobel, and Prewitt methods yielded 

detection errors of 28%, 36%, and 19%, 
respectively, with detection times of 18, 19, and 16 
seconds. In contrast, YOLO integrated with 
ResNet achieved a significantly lower detection 
error of 8% and a faster detection time of 10 
seconds. 

 

Table 1 Performance evaluation of proposed 

defect detection methods 

The DAGM 2007 dataset was utilised to train and 
evaluate the models. This dataset contains ten 
categories and 10,000 images, with the first six 
categories forming the development set and the 
remaining four forming the competition set. Each 
development category included 1,000 “no defect” 
images and 150 “defective” images, while each 
competition category included 2,000 defect-free 
and 300 defective images. In this context, a defect-
free image displays an intact background pattern, 
whereas defective images show identifiable 
imperfections. 

Image Preprocessing and Comparative 
Evaluation 

All images underwent preprocessing steps such 
as grayscale conversion, contrast enhancement, 
and noise reduction to improve quality. The edge 
detection techniques—Roberts, Sobel, and 
Prewitt—were implemented using their 
respective established algorithms for performance 
comparison. Mechanical components such as 
bearings and gears were mounted on the optical 
platform, and images were captured for 
evaluation.Performance assessment considered 
detection degree, detection time, and part edge 
image error. The YOLO with ResNet model 

Defect 
detection 
Methods 

Detection 
Error (%) 

Detection 
Time (Sec) 

Roberts 28 18 

Sobel 36 19 

Prewitt 19 16 

YOLO with 
RestNets 

8 10 
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demonstrated superior results in all metrics, 
indicating the benefit of combining deep learning-
based object detection with advanced feature 
extraction architectures. 

Implementation and Training Environment 

The neural network models were developed and 
trained using Python, NumPy, scikit-learn, the 
PyTorch deep learning framework, and the 
matplotlib and torchvision libraries. The Kaggle 
platform’s computing resources supported model 
training and evaluation. An application was 
developed to enable user interaction with the 
trained architecture for image classification and 
defect detection. 

Model performance was influenced by factors 
including batch size, learning rate, number of 
training epochs, and the proportion of training 
data relative to the total dataset. Optimising these 
parameters was critical for achieving the high 
detection accuracy demonstrated by YOLO with 
ResNet. 

Summary of Findings 

Figures 4 and 5 illustrate the comparative 
detection errors and detection times, respectively. 
YOLO with ResNet consistently outperformed the 
traditional methods, providing faster detection 
and significantly reduced error rates. These 
improvements highlight the method’s suitability 
for real-time industrial defect detection 
applications, where both precision and speed are 
crucial.  

Figure 4 Comparison of detection error for 

various defect detection methods 

 

 

Figure 5 Comparison of detection time for 

various defect detection methods 

CONCLUSION 

With the continuous advancement of mechanical 
manufacturing technology, ensuring the quality 
of mechanical parts has become increasingly 
critical. Traditional MPI-based inspection 
methods suffer from limitations such as unstable 
manual operation, low efficiency, and high error 
rates. This study demonstrated that integrating 
ResNet-152 with YOLO for defect detection 
significantly enhances both accuracy and 
efficiency in identifying mechanical part defects. 

The proposed method streamlines the early 
detection process, enabling faster response times 
for corrective actions and providing a reliable 
framework for quality control. By combining deep 
learning-based feature extraction with real-time 
object detection, the system effectively collects 
and analyses defect data, facilitating timely 
intervention and optimised maintenance 
strategies. 

Despite achieving a low detection error rate of 
10% and high operational efficiency in the 
experimental setup, certain challenges remain. 
Variability in mechanical part size and features, 
along with suboptimal image quality caused by 
noise, blurring, or poor lighting, can reduce 
detection accuracy. Furthermore, while the 
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proposed method shows promise for industrial 
applications, it requires further optimisation to 
meet the stringent demands of large-scale 
manufacturing environments. 

Future work will focus on incorporating FPGA 
implementations of the ResNet architecture to 
further enhance processing speed and scalability, 
ensuring the system meets the rigorous 
performance requirements of industrial-grade 
applications. 
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