J. Sci. Trans. Environ. Technov.2024, 17 (4) :151 - 159

Image Processing in identifying the Industrial Automation Impact using
RestNet with Convolutional Neural Network

K. Kalaimaamani!®*, M. Shanmugam?, Dr.K.Tamilselvan3 and R.Kanagaraj*

1 Assistant Professor, Department of Electronics and Communication Engineering, Mahendra Engineering
College (Autonomous), Namakkal. E mail: kalaimaamanik@mahendra.info

234 Assistant Professors, Department of Electronics and Communication Engineering, Mahendra
Engineering College (Autonomous), Namakkal.

Article History

Received: 08.04.2024

Revised and Accepted: 10.05.2024
Published: 15.06.2024

https://doi.org/10.56343/STET.116.017.004.006
www.stetjournals.com

ABSTRACT

The integration of Image Processing (IP) and Deep Learning (DL) techniques within smart Internet of Things
(IoT)-based industrial automation systems has significantly advanced manufacturing efficiency. In
industrial manufacturing, the precise mechanical inspection of components such as gears and bearings is
critical; however, human factors often compromise the stability, efficiency, and accuracy of conventional
testing methods. To address these challenges, this study proposes a novel edge detection approach
leveraging a Convolutional Neural Network (CNN) with ResNet-152 for multidirectional edge detection of
mechanical parts, enhancing feature detection precision. The method improves productivity, predictive
maintenance, quality control, and overall operational excellence. The proposed model was evaluated against
various DL methods and achieved an edge detection accuracy of 92.53%, surpassing traditional approaches.
These results demonstrate the potential of the ResNet-152-based CNN in delivering high-quality, reliable
defect detection in industrial environments.
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increasingly demands precise identification of
mechanical parts, particularly in gears and
bearing edge profiles (Goli et al., 2021; Zicari et al.,
2021). In line with the trend towards
standardization and serialization, high-quality
and high-precision gears and bearings are
essential for ensuring product reliability (Zhu et
al., 2022). Accurate detection of key features in
mechanical parts is therefore crucial in current
industrial production, as it not only affects
product quality but also underpins efficiency
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improvements and equipment safety (Lv et al,
2022).

Image Processing (IP) plays a foundational role in
computer vision and computer science (Pandey et
al., 2023; Bedi et al., 2023; Sharifani and Amini,
2023; Saberironaghi et al., 2023). It encompasses
diverse algorithms and techniques for enhancing
and analysing visual data, with goals including
noise reduction, sharpening, and contrast
enhancement. Such techniques are widely applied
in fields such as medicine, photography, and
video production. Due to the limitations of
traditional contact detection—often associated
with lower efficiency and higher error rates —non-
contact IP-based detection has increasingly
replaced conventional approaches. This transition
has delivered higher accuracy and stability, but
meeting the stringent demands of modern digital
industrial systems remains a challenge (Lei, 2022;
Capponi et al., 2022).

The primary purpose of automation systems in
manufacturing and industrial contexts is to
enhance productivity and operational efficiency.
These systems integrate hardware and software to
optimise processes such as production, inventory
management, and quality assurance (Kshirsagar
et al.,, 2023a; Dhingra et al., 2022a). Components
such as Programmable Logic Controllers (PLCs),
actuators, sensors, human-machine interfaces
(HMlIs), and communication networks form the
backbone of such systems. The PLC functions as
the system’s “brain,” executing programmed
instructions to control machinery. Actuators and
sensors handle input and output operations,
while HMIs allow operators to monitor systems
and make necessary adjustments. Collectively,
these components are indispensable for modern
production, contributing to quality improvement,
cost reduction, and process optimisation (Mandal
et al., 2022; Kshirsagar et al., 2022a).

Field Programmable Gate Arrays (FPGAs) have
emerged as a powerful and flexible hardware
platform  with  substantial = computational
capabilities. Over the past two decades, they have
been widely applied in IP-based technologies.
Leveraging extensive research and careful system
design, the present work proposes a novel
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approach using FPGA-based IP methods to
inspect mechanical components. This technique
exploits the FPGA’s parallel processing capacity
and adaptability, enabling high-speed, accurate
mechanical part detection through optimised
design strategies. The novelty of this research lies
in the integration of ResNet with IP technologies,
tailored to meet the specific requirements of
mechanical component inspection.

The objective is to reduce human error
and resource waste, while improving the
reliability and performance of detection systems,
thereby fostering intelligent growth in the
mechanical parts manufacturing sector. This is
achieved by investigating automation with edge
detection and evaluating the effectiveness of the
Message-Passing Interface (MPI). The subsequent
sections outline: (i) an overview of ResNet
applications and related research in mechanical
parts inspection; (ii) a detailed methodology
integrating IP and MPI data for precise
multidimensional edge detection using a CNN
with ResNet; (iii) performance evaluation of the
enhanced detection model; and (iv) a summary of
the research findings.

LITERATURE REVIEW

With the advancement of computing and
electronics, many instruments have evolved
towards intelligence, multifunctionality, and
miniaturisation. FPGA technology has proven
highly effective for implementing diverse digital
logic functions, and numerous researchers have
explored its applications in recent years. Wang et
al. (2022) proposed an acoustic resonance
frequency monitoring technique implemented
using FPGA devices to address the inadequate
detection capacity of non-invasive oxygen sensors
in healthcare. Comparative studies indicated a
sensitivity limit of 1000 ppm with a 4 s response
time, and a detection range from 1000 ppm to
100% oxygen concentration.

Kumar et al. (2022) developed a method for
enhancing voice message encryption using a
lightweight AES algorithm implemented on
FPGA. Simulation studies revealed that this
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approach  achieved  substantially = higher
encryption performance than standard methods,
suggesting strong potential for real-world
applications. The rapid technological evolution in
manufacturing has driven the adoption of
automation, with machinery increasingly
upgraded for digital integration. In this context,
each mechanical component plays a critical role,
prompting researchers to focus on improving
detection and quality control processes. For
example, Roy et al. proposed a detection approach
combining autonomous fibre insertion machinery
with optical coherence tomography for quality
assurance in conventional manufacturing. Their
method effectively assessed variations, identified
production anomalies, and reduced process
variability.

Brunella et al. (2022) addressed limitations in
universal CPU technology for modern network
interface cards by developing FPGA-based
software  solutions.  Experimental results
demonstrated the ability to execute dynamically
loaded applications with high CPU core packet
processing throughput and a tenfold reduction in
packet forwarding latency. Similarly, Yang et al.
(2021) investigated the anisotropic mechanical
properties of stereolithography-manufactured
parts. They found tensile strength varied
significantly between planar and edge builds,
with a 35% comparative range distribution,
confirming anisotropic behaviour.

Recent studies have also explored the integration
of machine learning (ML) and deep learning (DL)
in manufacturing contexts. Kumar et al. (2023)
reviewed process design and production control
for additive manufacturing using ML. Kor et al.
(2023) examined DL applications and digital twins
within Industry 4.0. Abdalzaher et al. (2023)
utilised Al for securing IoT-based smart systems,
focusing on trust mechanisms to mitigate security
risks. Uddin et al. (2023) evaluated the integration
of IoT services with DL technologies, while
Rahman et al. (2023) defined Industry 4.0 in terms
of ML and IoT usage.

Other notable contributions include Al
Shahrani et al. (2023), who demonstrated
intelligent manufacturing automation powered

by ML through the Internet; Xing et al. (2023), who
applied DL and IP to automate A-line recognition
in lung ultrasound images; and Sarker (2021), who
provided a comprehensive overview of DL
techniques, taxonomy, and applications.
Yazdinejad et al. (2023) proposed an ensemble DL
model for cyber threat detection in industrial IoT,
and Chander and Kumar (2023) employed
metaheuristic feature selection with DL-enabled
cascaded recurrent neural networks for anomaly
detection in loT-based industrial environments.

RESEARCH METHODOLOGY

In this study, error detection is performed
in two main stages. In the first stage, the image
size and recognition rate of the input images are
measured. In the second stage, errors are
identified based on the placement and defects
recorded in the MPI database of mechanical
components. Figure 1 illustrates the proposed
model for detecting defects in two different types
of mechanical components.

Input image captured from camera

v

Image processing using RestNet for
recognizing object recognition rate

v

Target object recognition by YOLO

v

MPI for analyzing defect checklist of
mechanical component with database

h 4

Accomplish with high accuracy in defect
detection of manufacturing machine parts

Figure 1 Flow diagram of defect detection
method in manufacturing industry
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The input image of the mechanical component is
pre-processed using OpenCV, and the target
object is recognised using a pre-trained YOLO
model. After extracting the Region of Interest
(ROI), the relevant area is analysed to detect errors
in accordance with the factory’s process
standards. This approach is designed to reduce
both economic and technical burdens for small
enterprises, as it enables defect detection using
externally captured images without the need for
physical measurement tools.

For optimal application, certain conditions must
be met:

1. The camera must be positioned at a fixed
distance from the object.

2. Lighting conditions should remain
consistent during image capture.

3. The camera’s field of view should closely
approximate that of the human eye.

4. Lens-induced distortion must be
corrected using a distortion correction

algorithm.

In the image processing and object recognition
stages, additional factors are considered. For
example, intentional vibration is introduced to
simulate  conveyor belt movement in
manufacturing, particularly for fluid-containing
objects. Since the inspection target may be in
motion, the methodology accounts for temporal
and positional variations caused by mechanical

operations.
Image Preprocessing using RestNet-152

ResNet-152, a deeper yet less complex
architecture than VGG, is employed for
uncertainty recognition in both the training and
testing datasets during the initial defect detection
experiments. With 152 layers, ResNet-152 offers
greater accuracy, scalability, and capability in
detecting high-level patterns compared to
conventional methods. Its deep architecture
enables the extraction of complex and abstract
image features, which is critical in this research.
While ResNet-152 requires more computational
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resources and longer training times, its superior
accuracy in mechanical part detection justifies its
selection.
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Figure 2 Architecture of RestNet -152

The architecture begins with an input layer
accepting images of fixed size with three RGB
channels, followed by an initial convolution layer
(Convl) using a 7x7 kernel to produce 64
channels. This output is downsampled to 112x112
pixels, then processed by a MaxPool layer to
further reduce dimensions to 56x56 pixels. The
subsequent residual blocks, a key feature of
ResNet-152, enable the network to learn
effectively while preventing gradient vanishing.
The penultimate layer applies average pooling,
and the final Fully Connected (FC) layer outputs
classification results, restricted here to two classes:
“Defect” and “No Defect.”

A skip connection in each residual block
allows the model to transmit information between
layers without loss of relevance. YOLO, a single-
shot object detection framework, is integrated
with ResNet-152 to predict class labels and
bounding boxes in real time. Compared to multi-
stage detection approaches, YOLO offers faster
and more efficient processing, even on low-power
devices.
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MPI-Based Data Transmission

Figure 3 shows the MPI database flow. The
process begins in an idle state, moving to a startup
state when the MPI issues a bus request.
Depending on whether a read or write request is
identified, the system transitions to the
appropriate operational state. For transfers below
8 bits, read and write operations proceed directly.
For transfers exceeding 8 bits, the system enters a
reply mode, and upon a successful response,
begins byte-by-byte data transfer. Invalid
responses trigger a pause state, followed by
termination and a return to idle mode. This
mechanism minimises data loss and enhances
detection accuracy.

Idle State of mechanical part ‘
data |

Initiate the mechanical part
data

l

Write the checklist procedure

Read the mechanical
procedure operation

4{ Answer back the mechanical part detection procedure

Stop the procedure once attained I

Figure 3 Flow chart of MPI database

RESULT AND DISCUSSION

The experimental evaluation was conducted
using a precision optical platform comprising a
camera, stage, and other IoT-enabled devices.
Prior to testing, all equipment was properly
connected and calibrated to ensure measurement
accuracy.

Defect Detection Performance

The proposed defect detection approach was
compared with conventional edge detection
methods, including Roberts, Sobel, and Prewitt, as
well as the integrated YOLO with ResNet model.
Table 1 presents the performance metrics in terms
of detection error percentage and detection time.
The Roberts, Sobel, and Prewitt methods yielded

detection errors of 28%, 36%, and 19%,
respectively, with detection times of 18, 19, and 16
seconds. In contrast, YOLO integrated with
ResNet achieved a significantly lower detection
error of 8% and a faster detection time of 10
seconds.

Defect Detection Detection
detection Error (%) Time (Sec)
Methods

Roberts 28 18

Sobel 36 19

Prewitt 19 16

YOLO  with | 8 10
RestNets

Table 1 Performance evaluation of proposed
defect detection methods

The DAGM 2007 dataset was utilised to train and
evaluate the models. This dataset contains ten
categories and 10,000 images, with the first six
categories forming the development set and the
remaining four forming the competition set. Each
development category included 1,000 “no defect”
images and 150 “defective” images, while each
competition category included 2,000 defect-free
and 300 defective images. In this context, a defect-
free image displays an intact background pattern,
whereas defective images show identifiable
imperfections.

Image Preprocessing and Comparative
Evaluation

All images underwent preprocessing steps such
as grayscale conversion, contrast enhancement,
and noise reduction to improve quality. The edge
detection techniques—Roberts, Sobel, and
Prewitt—were  implemented  using their
respective established algorithms for performance
comparison. Mechanical components such as
bearings and gears were mounted on the optical
platform, and images were captured for
evaluation.Performance assessment considered
detection degree, detection time, and part edge
image error. The YOLO with ResNet model
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demonstrated superior results in all metrics,
indicating the benefit of combining deep learning-
based object detection with advanced feature
extraction architectures.

Implementation and Training Environment

The neural network models were developed and
trained using Python, NumPy, scikit-learn, the
PyTorch deep learning framework, and the
matplotlib and torchvision libraries. The Kaggle
platform’s computing resources supported model
training and evaluation. An application was
developed to enable user interaction with the
trained architecture for image classification and
defect detection.

Model performance was influenced by factors
including batch size, learning rate, number of
training epochs, and the proportion of training
data relative to the total dataset. Optimising these
parameters was critical for achieving the high
detection accuracy demonstrated by YOLO with
ResNet.

Summary of Findings

Figures 4 and 5 illustrate the comparative
detection errors and detection times, respectively.
YOLO with ResNet consistently outperformed the
traditional methods, providing faster detection
and significantly reduced error rates. These
improvements highlight the method’s suitability
for real-time industrial defect detection
applications, where both precision and speed are
crucial.

Detection Error (%) for various defect detection methods
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Figure 4 Comparison of detection error for
various defect detection methods
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Detection Time for various defect detection methods
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Figure 5 Comparison of detection time for
various defect detection methods

CONCLUSION

With the continuous advancement of mechanical
manufacturing technology, ensuring the quality
of mechanical parts has become increasingly
critical.  Traditional ~MPI-based inspection
methods suffer from limitations such as unstable
manual operation, low efficiency, and high error
rates. This study demonstrated that integrating
ResNet-152 with YOLO for defect detection
significantly ~enhances both accuracy and
efficiency in identifying mechanical part defects.

The proposed method streamlines the early
detection process, enabling faster response times
for corrective actions and providing a reliable
framework for quality control. By combining deep
learning-based feature extraction with real-time
object detection, the system effectively collects
and analyses defect data, facilitating timely
intervention and optimised maintenance
strategies.

Despite achieving a low detection error rate of
10% and high operational efficiency in the
experimental setup, certain challenges remain.
Variability in mechanical part size and features,
along with suboptimal image quality caused by
noise, blurring, or poor lighting, can reduce
detection accuracy. Furthermore, while the
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proposed method shows promise for industrial
applications, it requires further optimisation to
meet the stringent demands of large-scale
manufacturing environments.

Future work will focus on incorporating FPGA
implementations of the ResNet architecture to
further enhance processing speed and scalability,
ensuring the system meets the rigorous
performance requirements of industrial-grade
applications.
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